Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism
Abstract Translocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocati...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f8e058c49e347208faec432f78c2113 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3f8e058c49e347208faec432f78c2113 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3f8e058c49e347208faec432f78c21132021-12-02T17:45:17ZAnthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism10.1038/s41598-021-91596-32045-2322https://doaj.org/article/3f8e058c49e347208faec432f78c21132021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91596-3https://doaj.org/toc/2045-2322Abstract Translocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site. Interestingly, we also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins.Alexandra J. MachenMark T. FisherBret D. FreudenthalNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Alexandra J. Machen Mark T. Fisher Bret D. Freudenthal Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
description |
Abstract Translocation is essential to the anthrax toxin mechanism. Protective antigen (PA), the binding component of this AB toxin, forms an oligomeric pore that translocates lethal factor (LF) or edema factor, the active components of the toxin, into the cell. Structural details of the translocation process have remained elusive despite their biological importance. To overcome the technical challenges of studying translocation intermediates, we developed a method to immobilize, transition, and stabilize anthrax toxin to mimic important physiological steps in the intoxication process. Here, we report a cryoEM snapshot of PApore translocating the N-terminal domain of LF (LFN). The resulting 3.3 Å structure of the complex shows density of partially unfolded LFN near the canonical PApore binding site. Interestingly, we also observe density consistent with an α helix emerging from the 100 Å β barrel channel suggesting LF secondary structural elements begin to refold in the pore channel. We conclude the anthrax toxin β barrel aids in efficient folding of its enzymatic payload prior to channel exit. Our hypothesized refolding mechanism has broader implications for pore length of other protein translocating toxins. |
format |
article |
author |
Alexandra J. Machen Mark T. Fisher Bret D. Freudenthal |
author_facet |
Alexandra J. Machen Mark T. Fisher Bret D. Freudenthal |
author_sort |
Alexandra J. Machen |
title |
Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
title_short |
Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
title_full |
Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
title_fullStr |
Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
title_full_unstemmed |
Anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
title_sort |
anthrax toxin translocation complex reveals insight into the lethal factor unfolding and refolding mechanism |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3f8e058c49e347208faec432f78c2113 |
work_keys_str_mv |
AT alexandrajmachen anthraxtoxintranslocationcomplexrevealsinsightintothelethalfactorunfoldingandrefoldingmechanism AT marktfisher anthraxtoxintranslocationcomplexrevealsinsightintothelethalfactorunfoldingandrefoldingmechanism AT bretdfreudenthal anthraxtoxintranslocationcomplexrevealsinsightintothelethalfactorunfoldingandrefoldingmechanism |
_version_ |
1718379581021356032 |