First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers

This paper reports first-principles calculations on PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inlin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weiliang Ma, Jing Tian, Pascal Boulet, Marie-Christine Record
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
DFT
Acceso en línea:https://doaj.org/article/3f91fc03c54141feb99e6b3c7de47bae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3f91fc03c54141feb99e6b3c7de47bae
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic 2D materials
chalcogenides
thermoelectric properties
strain effects
DFT
Chemistry
QD1-999
spellingShingle 2D materials
chalcogenides
thermoelectric properties
strain effects
DFT
Chemistry
QD1-999
Weiliang Ma
Jing Tian
Pascal Boulet
Marie-Christine Record
First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
description This paper reports first-principles calculations on PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Se<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> monolayers. The strain effects on their electronic and thermoelectric properties as well as on their stability have been investigated. Without strain, the PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> monolayer exhibits highest Seebeck coefficient with a maximum value of 671 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>V/K. Under tensile strain the highest power factor are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12.38</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10.74</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.51</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> for PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Se<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> at 3%, 2% and 1% tensile strains, respectively. These values are 85.9%, 55.0% and 3.3% larger than those of the unstrained structures.
format article
author Weiliang Ma
Jing Tian
Pascal Boulet
Marie-Christine Record
author_facet Weiliang Ma
Jing Tian
Pascal Boulet
Marie-Christine Record
author_sort Weiliang Ma
title First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
title_short First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
title_full First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
title_fullStr First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
title_full_unstemmed First-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers
title_sort first-principle investigations on the electronic and transport properties of pbbi<sub>2</sub>te<sub>2</sub>x<sub>2</sub> (x = s/se/te) monolayers
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3f91fc03c54141feb99e6b3c7de47bae
work_keys_str_mv AT weiliangma firstprincipleinvestigationsontheelectronicandtransportpropertiesofpbbisub2subtesub2subxsub2subxssetemonolayers
AT jingtian firstprincipleinvestigationsontheelectronicandtransportpropertiesofpbbisub2subtesub2subxsub2subxssetemonolayers
AT pascalboulet firstprincipleinvestigationsontheelectronicandtransportpropertiesofpbbisub2subtesub2subxsub2subxssetemonolayers
AT mariechristinerecord firstprincipleinvestigationsontheelectronicandtransportpropertiesofpbbisub2subtesub2subxsub2subxssetemonolayers
_version_ 1718411009597636608
spelling oai:doaj.org-article:3f91fc03c54141feb99e6b3c7de47bae2021-11-25T18:31:22ZFirst-Principle Investigations on the Electronic and Transport Properties of PbBi<sub>2</sub>Te<sub>2</sub>X<sub>2</sub> (X = S/Se/Te) Monolayers10.3390/nano111129792079-4991https://doaj.org/article/3f91fc03c54141feb99e6b3c7de47bae2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2979https://doaj.org/toc/2079-4991This paper reports first-principles calculations on PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Se<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> monolayers. The strain effects on their electronic and thermoelectric properties as well as on their stability have been investigated. Without strain, the PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> monolayer exhibits highest Seebeck coefficient with a maximum value of 671 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>V/K. Under tensile strain the highest power factor are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>12.38</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10.74</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.51</mn><mo>×</mo><msup><mn>10</mn><mn>11</mn></msup></mrow></semantics></math></inline-formula> Wm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>K<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> for PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>S<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>, PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Se<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> and PbBi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Te<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> at 3%, 2% and 1% tensile strains, respectively. These values are 85.9%, 55.0% and 3.3% larger than those of the unstrained structures.Weiliang MaJing TianPascal BouletMarie-Christine RecordMDPI AGarticle2D materialschalcogenidesthermoelectric propertiesstrain effectsDFTChemistryQD1-999ENNanomaterials, Vol 11, Iss 2979, p 2979 (2021)