Modeling regulatory network topology improves genome-wide analyses of complex human traits
Gene regulatory networks are a useful means of inferring functional interactions from large-scale genomic data. Here, the authors develop a Bayesian framework integrating GWAS summary statistics with gene regulatory networks to identify genetic enrichments and associations simultaneously.
Guardado en:
Autores principales: | Xiang Zhu, Zhana Duren, Wing Hung Wong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3f97afd99a364fa6b7fc3dfd5dfbd711 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context
por: Zhanying Feng, et al.
Publicado: (2021) -
DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
por: Wanwen Zeng, et al.
Publicado: (2019) -
Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation
por: Jingxue Xin, et al.
Publicado: (2020) -
Sc-compReg enables the comparison of gene regulatory networks between conditions using single-cell data
por: Zhana Duren, et al.
Publicado: (2021) -
Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes
por: Xiang Zhu, et al.
Publicado: (2018)