Modeling regulatory network topology improves genome-wide analyses of complex human traits
Gene regulatory networks are a useful means of inferring functional interactions from large-scale genomic data. Here, the authors develop a Bayesian framework integrating GWAS summary statistics with gene regulatory networks to identify genetic enrichments and associations simultaneously.
Enregistré dans:
Auteurs principaux: | Xiang Zhu, Zhana Duren, Wing Hung Wong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3f97afd99a364fa6b7fc3dfd5dfbd711 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context
par: Zhanying Feng, et autres
Publié: (2021) -
DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
par: Wanwen Zeng, et autres
Publié: (2019) -
Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation
par: Jingxue Xin, et autres
Publié: (2020) -
Sc-compReg enables the comparison of gene regulatory networks between conditions using single-cell data
par: Zhana Duren, et autres
Publié: (2021) -
Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes
par: Xiang Zhu, et autres
Publié: (2018)