Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks
Abstract The reconstruction of Gene Regulatory Networks (GRNs) from gene expression data, supported by machine learning approaches, has received increasing attention in recent years. The task at hand is to identify regulatory links between genes in a network. However, existing methods often suffer w...
Guardado en:
Autores principales: | Paolo Mignone, Gianvito Pio, Sašo Džeroski, Michelangelo Ceci |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fa04fcf691b4bbcbf6dcf37d380ecce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition
por: Sang-woo Lee, et al.
Publicado: (2021) -
Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction
por: Andreas Markwirth, et al.
Publicado: (2019) -
Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation.
por: Flavia Vischi Winck, et al.
Publicado: (2013) -
Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis
por: Rinki Chauhan, et al.
Publicado: (2016) -
Uporaba metod strojnega učenja za preučevanje odnosov med značilnostmi branik in okoljem
por: Jernej Jevšenak, et al.
Publicado: (2017)