An explainable CNN approach for medical codes prediction from clinical text
Abstract Background Clinical notes are unstructured text documents generated by clinicians during patient encounters, generally are annotated with International Classification of Diseases (ICD) codes, which give formatted information about the diagnosis and treatment. ICD code has shown its potentia...
Guardado en:
Autores principales: | Shuyuan Hu, Fei Teng, Lufei Huang, Jun Yan, Haibo Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fa31aee624647a9993899b1ea411720 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ICD-11 extension codes support detailed clinical abstraction and comprehensive classification
por: Saskia E. Drösler, et al.
Publicado: (2021) -
Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images
por: Anil Johny, et al.
Publicado: (2021) -
Comparison of wavelet transformations to enhance convolutional neural network performance in brain tumor segmentation
por: Mohamadreza Hajiabadi, et al.
Publicado: (2021) -
Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
por: Christine M. Cutillo, et al.
Publicado: (2020) -
Real-time clinician text feeds from electronic health records
por: James T. H. Teo, et al.
Publicado: (2021)