Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
Canatar et al. propose a predictive theory of generalization in kernel regression applicable to real data. This theory explains various generalization phenomena observed in wide neural networks, which admit a kernel limit and generalize well despite being overparameterized.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fb570c6ce05419290b8cc1eebe16977 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Canatar et al. propose a predictive theory of generalization in kernel regression applicable to real data. This theory explains various generalization phenomena observed in wide neural networks, which admit a kernel limit and generalize well despite being overparameterized. |
---|