Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks

Canatar et al. propose a predictive theory of generalization in kernel regression applicable to real data. This theory explains various generalization phenomena observed in wide neural networks, which admit a kernel limit and generalize well despite being overparameterized.

Guardado en:
Detalles Bibliográficos
Autores principales: Abdulkadir Canatar, Blake Bordelon, Cengiz Pehlevan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/3fb570c6ce05419290b8cc1eebe16977
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3fb570c6ce05419290b8cc1eebe16977
record_format dspace
spelling oai:doaj.org-article:3fb570c6ce05419290b8cc1eebe169772021-12-02T15:52:52ZSpectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks10.1038/s41467-021-23103-12041-1723https://doaj.org/article/3fb570c6ce05419290b8cc1eebe169772021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23103-1https://doaj.org/toc/2041-1723Canatar et al. propose a predictive theory of generalization in kernel regression applicable to real data. This theory explains various generalization phenomena observed in wide neural networks, which admit a kernel limit and generalize well despite being overparameterized.Abdulkadir CanatarBlake BordelonCengiz PehlevanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
description Canatar et al. propose a predictive theory of generalization in kernel regression applicable to real data. This theory explains various generalization phenomena observed in wide neural networks, which admit a kernel limit and generalize well despite being overparameterized.
format article
author Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
author_facet Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
author_sort Abdulkadir Canatar
title Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
title_short Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
title_full Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
title_fullStr Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
title_full_unstemmed Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
title_sort spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3fb570c6ce05419290b8cc1eebe16977
work_keys_str_mv AT abdulkadircanatar spectralbiasandtaskmodelalignmentexplaingeneralizationinkernelregressionandinfinitelywideneuralnetworks
AT blakebordelon spectralbiasandtaskmodelalignmentexplaingeneralizationinkernelregressionandinfinitelywideneuralnetworks
AT cengizpehlevan spectralbiasandtaskmodelalignmentexplaingeneralizationinkernelregressionandinfinitelywideneuralnetworks
_version_ 1718385565313794048