Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging
Abstract As machine learning research in the field of cardiovascular imaging continues to grow, obtaining reliable model performance estimates is critical to develop reliable baselines and compare different algorithms. While the machine learning community has generally accepted methods such as k-fol...
Guardado en:
Autores principales: | Vikash Singh, Michael Pencina, Andrew J. Einstein, Joanna X. Liang, Daniel S. Berman, Piotr Slomka |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fbe52b623e04aa399b5b0f5b1e1ff34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results.
por: Chansik An, et al.
Publicado: (2021) -
Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials
por: Dongsun Yoo, et al.
Publicado: (2021) -
Leveling Out the Effect of Sample Runouts on Wear when Testing on the SMT-1 Friction Machine
por: Pogonyshev V.A., et al.
Publicado: (2021) -
Validation of the ST3x1 Step Test as an estimator of peak VO2 in adults with cardiovascular risk factors
por: Cristian Cofre-Bolados, et al.
Publicado: (2018) -
QUBO formulations for training machine learning models
por: Prasanna Date, et al.
Publicado: (2021)