Artificial neural networks trained to detect viral and phage structural proteins.
Phages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the physiological impact of viruses on microbial co...
Guardado en:
Autores principales: | Victor Seguritan, Nelson Alves, Michael Arnoult, Amy Raymond, Don Lorimer, Alex B Burgin, Peter Salamon, Anca M Segall |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fcd19c29c714c9c8afaeb6dc4345047 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Training Optimization for Artificial Neural Networks
por: Primitivo Toribio Luna, et al.
Publicado: (2010) -
An adiabatic method to train binarized artificial neural networks
por: Yuansheng Zhao, et al.
Publicado: (2021) -
Detection of the location of pneumothorax in chest X-rays using small artificial neural networks and a simple training process
por: Yongil Cho, et al.
Publicado: (2021) -
Microwave Imaging of the Neck by Means of Artificial Neural Networks for Tumor Detection
por: Chiara Dachena, et al.
Publicado: (2021) -
The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO.
por: Heverton L C Dutra, et al.
Publicado: (2021)