Using Shapley Values and Genetic Algorithms to Solve Multiobjective Optimization Problems
This paper proposes a new methodology to solve multiobjective optimization problems by invoking genetic algorithms and the concept of the Shapley values of cooperative games. It is well known that the Pareto-optimal solutions of multiobjective optimization problems can be obtained by solving the cor...
Guardado en:
Autor principal: | Hsien-Chung Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3fd7f708ffe648b28ec2481607dde5e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Snow Leopard Optimization Algorithm: A New Nature-Based Optimization Algorithm for Solving Optimization Problems
por: Petr Coufal, et al.
Publicado: (2021) -
Inefficiencies in Residency Matching Associated with Gale–Shapley Algorithms
por: Yue Wu, et al.
Publicado: (2021) -
PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
por: T.B. Nikitina
Publicado: (2017) -
Properly efficient solutions to non-differentiable multiobjective optimization problems
por: Batista dos Santos,L., et al.
Publicado: (2018) -
Multiobjective synthesis of robust control by multimass electromechanical systems based on Pareto-optimal solution
por: T.B. Nikitina
Publicado: (2015)