Using Shapley Values and Genetic Algorithms to Solve Multiobjective Optimization Problems
This paper proposes a new methodology to solve multiobjective optimization problems by invoking genetic algorithms and the concept of the Shapley values of cooperative games. It is well known that the Pareto-optimal solutions of multiobjective optimization problems can be obtained by solving the cor...
Enregistré dans:
Auteur principal: | Hsien-Chung Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3fd7f708ffe648b28ec2481607dde5e8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Snow Leopard Optimization Algorithm: A New Nature-Based Optimization Algorithm for Solving Optimization Problems
par: Petr Coufal, et autres
Publié: (2021) -
Inefficiencies in Residency Matching Associated with Gale–Shapley Algorithms
par: Yue Wu, et autres
Publié: (2021) -
PARETO OPTIMAL SOLUTION OF MULTIOBJECTIVE SYNTHESIS OF ROBUST CONTROLLERS OF MULTIMASS ELECTROMECHANICAL SYSTEMS BASED ON MULTISWARM STOCHASTIC MULTIAGENT OPTIMIZATION
par: T.B. Nikitina
Publié: (2017) -
Properly efficient solutions to non-differentiable multiobjective optimization problems
par: Batista dos Santos,L., et autres
Publié: (2018) -
Multiobjective synthesis of robust control by multimass electromechanical systems based on Pareto-optimal solution
par: T.B. Nikitina
Publié: (2015)