Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy

Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Taylor A. Hinsdale, Bilal H. Malik, Shuna Cheng, Oscar R. Benavides, Maryellen L. Giger, John M. Wright, Paras B. Patel, Javier A. Jo, Kristen C. Maitland
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3fe4e94ea55946189c029db792ed761b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3fe4e94ea55946189c029db792ed761b
record_format dspace
spelling oai:doaj.org-article:3fe4e94ea55946189c029db792ed761b2021-12-02T13:30:12ZEnhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy10.1038/s41598-021-84552-82045-2322https://doaj.org/article/3fe4e94ea55946189c029db792ed761b2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84552-8https://doaj.org/toc/2045-2322Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63).Taylor A. HinsdaleBilal H. MalikShuna ChengOscar R. BenavidesMaryellen L. GigerJohn M. WrightParas B. PatelJavier A. JoKristen C. MaitlandNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Taylor A. Hinsdale
Bilal H. Malik
Shuna Cheng
Oscar R. Benavides
Maryellen L. Giger
John M. Wright
Paras B. Patel
Javier A. Jo
Kristen C. Maitland
Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
description Abstract We demonstrate that structured illumination microscopy has the potential to enhance fluorescence lifetime imaging microscopy (FLIM) as an early detection method for oral squamous cell carcinoma. FLIM can be used to monitor or detect changes in the fluorescence lifetime of metabolic cofactors (e.g. NADH and FAD) associated with the onset of carcinogenesis. However, out of focus fluorescence often interferes with this lifetime measurement. Structured illumination fluorescence lifetime imaging (SI-FLIM) addresses this by providing depth-resolved lifetime measurements, and applied to oral mucosa, can localize the collected signal to the epithelium. In this study, the hamster model of oral carcinogenesis was used to evaluate SI-FLIM in premalignant and malignant oral mucosa. Cheek pouches were imaged in vivo and correlated to histopathological diagnoses. The potential of NADH fluorescence signal and lifetime, as measured by widefield FLIM and SI-FLIM, to differentiate dysplasia (pre-malignancy) from normal tissue was evaluated. ROC analysis was carried out with the task of discriminating between normal tissue and mild dysplasia, when changes in fluorescence characteristics are localized to the epithelium only. The results demonstrate that SI-FLIM (AUC = 0.83) is a significantly better (p-value = 0.031) marker for mild dysplasia when compared to widefield FLIM (AUC = 0.63).
format article
author Taylor A. Hinsdale
Bilal H. Malik
Shuna Cheng
Oscar R. Benavides
Maryellen L. Giger
John M. Wright
Paras B. Patel
Javier A. Jo
Kristen C. Maitland
author_facet Taylor A. Hinsdale
Bilal H. Malik
Shuna Cheng
Oscar R. Benavides
Maryellen L. Giger
John M. Wright
Paras B. Patel
Javier A. Jo
Kristen C. Maitland
author_sort Taylor A. Hinsdale
title Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
title_short Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
title_full Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
title_fullStr Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
title_full_unstemmed Enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
title_sort enhanced detection of oral dysplasia by structured illumination fluorescence lifetime imaging microscopy
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3fe4e94ea55946189c029db792ed761b
work_keys_str_mv AT taylorahinsdale enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT bilalhmalik enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT shunacheng enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT oscarrbenavides enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT maryellenlgiger enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT johnmwright enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT parasbpatel enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT javierajo enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
AT kristencmaitland enhanceddetectionoforaldysplasiabystructuredilluminationfluorescencelifetimeimagingmicroscopy
_version_ 1718392909112279040