NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease

Abstract The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor neuron axon terminal and a muscle fibre. NMJs are thought to be the primary site of peripheral pathology in many neuromuscular diseases, but innervation/denervation status is often assessed qualitatively with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alan Mejia Maza, Seth Jarvis, Weaverly Colleen Lee, Thomas J. Cunningham, Giampietro Schiavo, Maria Secrier, Pietro Fratta, James N. Sleigh, Elizabeth M. C. Fisher, Carole H. Sudre
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3ff0e26ea9ca4cddb08257a5dd74ce5e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3ff0e26ea9ca4cddb08257a5dd74ce5e
record_format dspace
spelling oai:doaj.org-article:3ff0e26ea9ca4cddb08257a5dd74ce5e2021-12-02T17:47:18ZNMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease10.1038/s41598-021-91094-62045-2322https://doaj.org/article/3ff0e26ea9ca4cddb08257a5dd74ce5e2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91094-6https://doaj.org/toc/2045-2322Abstract The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor neuron axon terminal and a muscle fibre. NMJs are thought to be the primary site of peripheral pathology in many neuromuscular diseases, but innervation/denervation status is often assessed qualitatively with poor systematic criteria across studies, and separately from 3D morphological structure. Here, we describe the development of ‘NMJ-Analyser’, to comprehensively screen the morphology of NMJs and their corresponding innervation status automatically. NMJ-Analyser generates 29 biologically relevant features to quantitatively define healthy and aberrant neuromuscular synapses and applies machine learning to diagnose NMJ degeneration. We validated this framework in longitudinal analyses of wildtype mice, as well as in four different neuromuscular disease models: three for amyotrophic lateral sclerosis (ALS) and one for peripheral neuropathy. We showed that structural changes at the NMJ initially occur in the nerve terminal of mutant TDP43 and FUS ALS models. Using a machine learning algorithm, healthy and aberrant neuromuscular synapses are identified with 95% accuracy, with 88% sensitivity and 97% specificity. Our results validate NMJ-Analyser as a robust platform for systematic and structural screening of NMJs, and pave the way for transferrable, and cross-comparison and high-throughput studies in neuromuscular diseases.Alan Mejia MazaSeth JarvisWeaverly Colleen LeeThomas J. CunninghamGiampietro SchiavoMaria SecrierPietro FrattaJames N. SleighElizabeth M. C. FisherCarole H. SudreNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alan Mejia Maza
Seth Jarvis
Weaverly Colleen Lee
Thomas J. Cunningham
Giampietro Schiavo
Maria Secrier
Pietro Fratta
James N. Sleigh
Elizabeth M. C. Fisher
Carole H. Sudre
NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
description Abstract The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor neuron axon terminal and a muscle fibre. NMJs are thought to be the primary site of peripheral pathology in many neuromuscular diseases, but innervation/denervation status is often assessed qualitatively with poor systematic criteria across studies, and separately from 3D morphological structure. Here, we describe the development of ‘NMJ-Analyser’, to comprehensively screen the morphology of NMJs and their corresponding innervation status automatically. NMJ-Analyser generates 29 biologically relevant features to quantitatively define healthy and aberrant neuromuscular synapses and applies machine learning to diagnose NMJ degeneration. We validated this framework in longitudinal analyses of wildtype mice, as well as in four different neuromuscular disease models: three for amyotrophic lateral sclerosis (ALS) and one for peripheral neuropathy. We showed that structural changes at the NMJ initially occur in the nerve terminal of mutant TDP43 and FUS ALS models. Using a machine learning algorithm, healthy and aberrant neuromuscular synapses are identified with 95% accuracy, with 88% sensitivity and 97% specificity. Our results validate NMJ-Analyser as a robust platform for systematic and structural screening of NMJs, and pave the way for transferrable, and cross-comparison and high-throughput studies in neuromuscular diseases.
format article
author Alan Mejia Maza
Seth Jarvis
Weaverly Colleen Lee
Thomas J. Cunningham
Giampietro Schiavo
Maria Secrier
Pietro Fratta
James N. Sleigh
Elizabeth M. C. Fisher
Carole H. Sudre
author_facet Alan Mejia Maza
Seth Jarvis
Weaverly Colleen Lee
Thomas J. Cunningham
Giampietro Schiavo
Maria Secrier
Pietro Fratta
James N. Sleigh
Elizabeth M. C. Fisher
Carole H. Sudre
author_sort Alan Mejia Maza
title NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
title_short NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
title_full NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
title_fullStr NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
title_full_unstemmed NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease
title_sort nmj-analyser identifies subtle early changes in mouse models of neuromuscular disease
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3ff0e26ea9ca4cddb08257a5dd74ce5e
work_keys_str_mv AT alanmejiamaza nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT sethjarvis nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT weaverlycolleenlee nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT thomasjcunningham nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT giampietroschiavo nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT mariasecrier nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT pietrofratta nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT jamesnsleigh nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT elizabethmcfisher nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
AT carolehsudre nmjanalyseridentifiessubtleearlychangesinmousemodelsofneuromusculardisease
_version_ 1718379460943675392