Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
The graph neural network (GNN) has been widely used for graph data representation. However, the existing researches only consider the ideal balanced dataset, and the imbalanced dataset is rarely considered. Traditional methods such as resampling, reweighting, and synthetic samples that deal with imb...
Guardado en:
Autores principales: | Shuhao Shi, Kai Qiao, Shuai Yang, Linyuan Wang, Jian Chen, Bin Yan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ff80d444be64e5e98263f0fcbf7e9e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
por: Giulia Varotto, et al.
Publicado: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
TWO-WAY METRIC LEARNING WITH MAJORITY AND MINORITY SUBSETS FOR CLASSIFICATION OF LARGE EXTREMELY IMBALANCED FACE DATASET
por: Ashu Kaushik, et al.
Publicado: (2021) -
Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
por: Halima EL Hamdaoui, et al.
Publicado: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021)