Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity
Abstract This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene chann...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ffa473086944f2b8f420a9248a5e2ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3ffa473086944f2b8f420a9248a5e2ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3ffa473086944f2b8f420a9248a5e2ac2021-12-02T16:06:31ZGraphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity10.1038/s41598-017-06906-52045-2322https://doaj.org/article/3ffa473086944f2b8f420a9248a5e2ac2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06906-5https://doaj.org/toc/2045-2322Abstract This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1–2 mS·V−1·□ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time.Dmitry KireevMax BrambachSilke SeyockVanessa MaybeckWangyang FuBernhard WolfrumAndreas OffenhäusserNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dmitry Kireev Max Brambach Silke Seyock Vanessa Maybeck Wangyang Fu Bernhard Wolfrum Andreas Offenhäusser Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
description |
Abstract This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1–2 mS·V−1·□ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time. |
format |
article |
author |
Dmitry Kireev Max Brambach Silke Seyock Vanessa Maybeck Wangyang Fu Bernhard Wolfrum Andreas Offenhäusser |
author_facet |
Dmitry Kireev Max Brambach Silke Seyock Vanessa Maybeck Wangyang Fu Bernhard Wolfrum Andreas Offenhäusser |
author_sort |
Dmitry Kireev |
title |
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
title_short |
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
title_full |
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
title_fullStr |
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
title_full_unstemmed |
Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
title_sort |
graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/3ffa473086944f2b8f420a9248a5e2ac |
work_keys_str_mv |
AT dmitrykireev graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT maxbrambach graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT silkeseyock graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT vanessamaybeck graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT wangyangfu graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT bernhardwolfrum graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity AT andreasoffenhausser graphenetransistorsforinterfacingwithcellstowardsadeeperunderstandingofliquidgatingandsensitivity |
_version_ |
1718384956799975424 |