AVMSN: An Audio-Visual Two Stream Crowd Counting Framework Under Low-Quality Conditions
Crowd counting is considered as the essential computer vision application that uses the convolutional neural network to model the crowd density as the regression task. However, the vision-based models are hard to extract the feature under low-quality conditions. As we know, visual and audio are used...
Guardado en:
Autores principales: | Ruihan Hu, Qinglong Mo, Yuanfei Xie, Yongqian Xu, Jiaqi Chen, Yalun Yang, Hongjian Zhou, Zhi-Ri Tang, Edmond Q. Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ffb5e5cfb494ba3b2324d68e2d72155 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crowd counting via Multi-Scale Adversarial Convolutional Neural Networks
por: Zhu Liping, et al.
Publicado: (2020) -
Cloud-Assisted Mobile Crowd Sensing for Route and Congestion Monitoring
por: Ozgun Yilmaz, et al.
Publicado: (2021) -
Assessing the relationship between perceived crowding, excitement, stress, satisfaction, and impulse purchase at the retails in Vietnam
por: Van Dat Tran
Publicado: (2020) -
Audio/ Videoconferencing Packages: High cost
por: Sonia Murillo, et al.
Publicado: (2006) -
Incidence of Lower Anterior Third Molars on Dental Crowding. A New Approach
por: Vergara,Alberto D., et al.
Publicado: (2017)