Beyond performance metrics: modeling outcomes and cost for clinical machine learning
Abstract Advances in medical machine learning are expected to help personalize care, improve outcomes, and reduce wasteful spending. In quantifying potential benefits, it is important to account for constraints arising from clinical workflows. Practice variation is known to influence the accuracy an...
Guardado en:
Autores principales: | James A. Diao, Leia Wedlund, Joseph Kvedar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/400b609441b14c7abb99aa419f20a394 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New machine learning model predicts who may benefit most from COVID-19 vaccination
por: Leia Wedlund, et al.
Publicado: (2021) -
Simulated trials: in silico approach adds depth and nuance to the RCT gold-standard
por: Leia Wedlund, et al.
Publicado: (2021) -
Innovative new model predicts glucose levels without poking or prodding
por: Leia Wedlund, et al.
Publicado: (2021) -
Wearables as a tool for measuring therapeutic adherence in behavioral health
por: Leia Wedlund, et al.
Publicado: (2021) -
Anticipating and treating dementia: lessons hidden in plain sight
por: Leia Wedlund, et al.
Publicado: (2020)