Standing wave effect and fractal structure in dislocation evolution

Abstract Theoretical model required for the evolution of regular dislocation pattern should simultaneously take into account both static distribution and dynamic evolution of dislocation pattern. In principle, there exists a stable uniformly moving dislocation with both core and far field advancing...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: P. Li, Z. F. Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/402ebbc8034f411da7cb6507d2910083
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Theoretical model required for the evolution of regular dislocation pattern should simultaneously take into account both static distribution and dynamic evolution of dislocation pattern. In principle, there exists a stable uniformly moving dislocation with both core and far field advancing at the same constant velocity, which suggests the existence of the traveling waves representing moving dislocation. Therefore, one new term “dislocation wave” is defined by simultaneously consisting of both an elastic wave and a dislocation in each wavefront. According to the standing wave effect, the edge dislocation segments capture mutually to form the periodic ladder structures at the nodes. These persistent slip band (PSB) ladders are not only self-organized but also self-similar dislocation patterns. The fractal dimension further reveals the intrinsic nature of crack initiation and propagation along slip bands and deformation bands.