In vivo genome editing at the albumin locus to treat methylmalonic acidemia

Methylmalonic acidemia (MMA) is a metabolic disorder most commonly caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene. Although adeno-associated viral (AAV) gene therapy has been effective at correcting the disease phenotype in MMA mouse models, clinical translation may be impaired by l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jessica L. Schneller, Ciaran M. Lee, Leah E. Venturoni, Randy J. Chandler, Ang Li, Sangho Myung, Thomas J. Cradick, Ayrea E. Hurley, William R. Lagor, Gang Bao, Charles P. Venditti
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/40477017c9594449b2c47c26ce788c14
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:40477017c9594449b2c47c26ce788c14
record_format dspace
spelling oai:doaj.org-article:40477017c9594449b2c47c26ce788c142021-11-28T04:33:16ZIn vivo genome editing at the albumin locus to treat methylmalonic acidemia2329-050110.1016/j.omtm.2021.11.004https://doaj.org/article/40477017c9594449b2c47c26ce788c142021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2329050121001765https://doaj.org/toc/2329-0501Methylmalonic acidemia (MMA) is a metabolic disorder most commonly caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene. Although adeno-associated viral (AAV) gene therapy has been effective at correcting the disease phenotype in MMA mouse models, clinical translation may be impaired by loss of episomal transgene expression and magnified by the need to treat patients early in life. To achieve permanent correction, we developed a dual AAV strategy to express a codon-optimized MMUT transgene from Alb and tested various CRISPR-Cas9 genome-editing vectors in newly developed knockin mouse models of MMA. For one target site in intron 1 of Alb, we designed rescue cassettes expressing MMUT behind a 2A-peptide or an internal ribosomal entry site sequence. A second guide RNA targeted the initiator codon, and the donor cassette encompassed the proximal albumin promoter in the 5′ homology arm. Although all editing approaches were therapeutic, targeting the start codon of albumin allowed the use of a donor cassette that also functioned as an episome and after homologous recombination, even without the expression of Cas9, as an integrant. Targeting the albumin locus using these strategies would be effective for other metabolic disorders where early treatment and permanent long-term correction are needed.Jessica L. SchnellerCiaran M. LeeLeah E. VenturoniRandy J. ChandlerAng LiSangho MyungThomas J. CradickAyrea E. HurleyWilliam R. LagorGang BaoCharles P. VendittiElsevierarticleadeno-associated virusalbuminCRISPR-Cas9metabolic disordersmethylmalonic acidemiagenome editingGeneticsQH426-470CytologyQH573-671ENMolecular Therapy: Methods & Clinical Development, Vol 23, Iss , Pp 619-632 (2021)
institution DOAJ
collection DOAJ
language EN
topic adeno-associated virus
albumin
CRISPR-Cas9
metabolic disorders
methylmalonic acidemia
genome editing
Genetics
QH426-470
Cytology
QH573-671
spellingShingle adeno-associated virus
albumin
CRISPR-Cas9
metabolic disorders
methylmalonic acidemia
genome editing
Genetics
QH426-470
Cytology
QH573-671
Jessica L. Schneller
Ciaran M. Lee
Leah E. Venturoni
Randy J. Chandler
Ang Li
Sangho Myung
Thomas J. Cradick
Ayrea E. Hurley
William R. Lagor
Gang Bao
Charles P. Venditti
In vivo genome editing at the albumin locus to treat methylmalonic acidemia
description Methylmalonic acidemia (MMA) is a metabolic disorder most commonly caused by mutations in the methylmalonyl-CoA mutase (MMUT) gene. Although adeno-associated viral (AAV) gene therapy has been effective at correcting the disease phenotype in MMA mouse models, clinical translation may be impaired by loss of episomal transgene expression and magnified by the need to treat patients early in life. To achieve permanent correction, we developed a dual AAV strategy to express a codon-optimized MMUT transgene from Alb and tested various CRISPR-Cas9 genome-editing vectors in newly developed knockin mouse models of MMA. For one target site in intron 1 of Alb, we designed rescue cassettes expressing MMUT behind a 2A-peptide or an internal ribosomal entry site sequence. A second guide RNA targeted the initiator codon, and the donor cassette encompassed the proximal albumin promoter in the 5′ homology arm. Although all editing approaches were therapeutic, targeting the start codon of albumin allowed the use of a donor cassette that also functioned as an episome and after homologous recombination, even without the expression of Cas9, as an integrant. Targeting the albumin locus using these strategies would be effective for other metabolic disorders where early treatment and permanent long-term correction are needed.
format article
author Jessica L. Schneller
Ciaran M. Lee
Leah E. Venturoni
Randy J. Chandler
Ang Li
Sangho Myung
Thomas J. Cradick
Ayrea E. Hurley
William R. Lagor
Gang Bao
Charles P. Venditti
author_facet Jessica L. Schneller
Ciaran M. Lee
Leah E. Venturoni
Randy J. Chandler
Ang Li
Sangho Myung
Thomas J. Cradick
Ayrea E. Hurley
William R. Lagor
Gang Bao
Charles P. Venditti
author_sort Jessica L. Schneller
title In vivo genome editing at the albumin locus to treat methylmalonic acidemia
title_short In vivo genome editing at the albumin locus to treat methylmalonic acidemia
title_full In vivo genome editing at the albumin locus to treat methylmalonic acidemia
title_fullStr In vivo genome editing at the albumin locus to treat methylmalonic acidemia
title_full_unstemmed In vivo genome editing at the albumin locus to treat methylmalonic acidemia
title_sort in vivo genome editing at the albumin locus to treat methylmalonic acidemia
publisher Elsevier
publishDate 2021
url https://doaj.org/article/40477017c9594449b2c47c26ce788c14
work_keys_str_mv AT jessicalschneller invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT ciaranmlee invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT leaheventuroni invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT randyjchandler invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT angli invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT sanghomyung invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT thomasjcradick invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT ayreaehurley invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT williamrlagor invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT gangbao invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
AT charlespvenditti invivogenomeeditingatthealbuminlocustotreatmethylmalonicacidemia
_version_ 1718408310971957248