Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19
Abstract A key task of emergency departments is to promptly identify patients who require hospital admission. Early identification ensures patient safety and aids organisational planning. Supervised machine learning algorithms can use data describing historical episodes to make ahead-of-time predict...
Guardado en:
Autores principales: | Christopher Duckworth, Francis P. Chmiel, Dan K. Burns, Zlatko D. Zlatev, Neil M. White, Thomas W. V. Daniels, Michael Kiuber, Michael J. Boniface |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/404d9950339044a28d5e3a7b9f106d13 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
por: F. P. Chmiel, et al.
Publicado: (2021) -
Impact of the COVID-19 pandemic on emergency department attendances and acute medical admissions
por: Michael E. Reschen, et al.
Publicado: (2021) -
Influence of the COVID-19 Pandemic on Admissions for Retinal Detachment in a Tertiary Eye Emergency Department
por: Franzolin E, et al.
Publicado: (2021) -
Managing patient expectations at emergency department triage
por: Shital Shah, et al.
Publicado: (2015) -
A Scoping Review of Emergency Department Discharge Risk Stratification
por: Todd A. Jaffe, et al.
Publicado: (2021)