Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19
Abstract A key task of emergency departments is to promptly identify patients who require hospital admission. Early identification ensures patient safety and aids organisational planning. Supervised machine learning algorithms can use data describing historical episodes to make ahead-of-time predict...
Enregistré dans:
Auteurs principaux: | Christopher Duckworth, Francis P. Chmiel, Dan K. Burns, Zlatko D. Zlatev, Neil M. White, Thomas W. V. Daniels, Michael Kiuber, Michael J. Boniface |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/404d9950339044a28d5e3a7b9f106d13 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Using explainable machine learning to identify patients at risk of reattendance at discharge from emergency departments
par: F. P. Chmiel, et autres
Publié: (2021) -
Impact of the COVID-19 pandemic on emergency department attendances and acute medical admissions
par: Michael E. Reschen, et autres
Publié: (2021) -
Influence of the COVID-19 Pandemic on Admissions for Retinal Detachment in a Tertiary Eye Emergency Department
par: Franzolin E, et autres
Publié: (2021) -
Managing patient expectations at emergency department triage
par: Shital Shah, et autres
Publié: (2015) -
A Scoping Review of Emergency Department Discharge Risk Stratification
par: Todd A. Jaffe, et autres
Publié: (2021)