Noninvasive Prototype for Type 2 Diabetes Detection

The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selecti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Javier Ferney Castillo García, Jesús Hamilton Ortiz, Osamah Ibrahim Khalaf, Adrián David Valencia Hernández, Luis Carlos Rodríguez Timaná
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/40525c3eeba84391bd4e55c82379d377
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:40525c3eeba84391bd4e55c82379d377
record_format dspace
spelling oai:doaj.org-article:40525c3eeba84391bd4e55c82379d3772021-11-22T01:09:36ZNoninvasive Prototype for Type 2 Diabetes Detection2040-230910.1155/2021/8077665https://doaj.org/article/40525c3eeba84391bd4e55c82379d3772021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/8077665https://doaj.org/toc/2040-2309The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance (p < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.Javier Ferney Castillo GarcíaJesús Hamilton OrtizOsamah Ibrahim KhalafAdrián David Valencia HernándezLuis Carlos Rodríguez TimanáHindawi LimitedarticleMedicine (General)R5-920Medical technologyR855-855.5ENJournal of Healthcare Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
Medical technology
R855-855.5
spellingShingle Medicine (General)
R5-920
Medical technology
R855-855.5
Javier Ferney Castillo García
Jesús Hamilton Ortiz
Osamah Ibrahim Khalaf
Adrián David Valencia Hernández
Luis Carlos Rodríguez Timaná
Noninvasive Prototype for Type 2 Diabetes Detection
description The present work demonstrates the design and implementation of a human-safe, portable, noninvasive device capable of predicting type 2 diabetes, using electrical bioimpedance and biometric features to train an artificial learning machine using an active learning algorithm based on population selection. In addition, there is an API with a graphical interface that allows the prediction and storage of data when the characteristics of the person are sent. The results obtained show an accuracy higher than 90% with statistical significance (p < 0.05). The Kappa coefficient values were higher than 0.9, showing that the device has a good predictive capacity which would allow the screening process of type 2 diabetes. This development contributes to preventive medicine and makes it possible to determine at a low cost, comfortably, without medical preparation, and in less than 2 minutes whether a person has type 2 diabetes.
format article
author Javier Ferney Castillo García
Jesús Hamilton Ortiz
Osamah Ibrahim Khalaf
Adrián David Valencia Hernández
Luis Carlos Rodríguez Timaná
author_facet Javier Ferney Castillo García
Jesús Hamilton Ortiz
Osamah Ibrahim Khalaf
Adrián David Valencia Hernández
Luis Carlos Rodríguez Timaná
author_sort Javier Ferney Castillo García
title Noninvasive Prototype for Type 2 Diabetes Detection
title_short Noninvasive Prototype for Type 2 Diabetes Detection
title_full Noninvasive Prototype for Type 2 Diabetes Detection
title_fullStr Noninvasive Prototype for Type 2 Diabetes Detection
title_full_unstemmed Noninvasive Prototype for Type 2 Diabetes Detection
title_sort noninvasive prototype for type 2 diabetes detection
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/40525c3eeba84391bd4e55c82379d377
work_keys_str_mv AT javierferneycastillogarcia noninvasiveprototypefortype2diabetesdetection
AT jesushamiltonortiz noninvasiveprototypefortype2diabetesdetection
AT osamahibrahimkhalaf noninvasiveprototypefortype2diabetesdetection
AT adriandavidvalenciahernandez noninvasiveprototypefortype2diabetesdetection
AT luiscarlosrodrigueztimana noninvasiveprototypefortype2diabetesdetection
_version_ 1718418394738327552