Automated machine learning for endemic active tuberculosis prediction from multiplex serological data

Abstract Serological diagnosis of active tuberculosis (TB) is enhanced by detection of multiple antibodies due to variable immune responses among patients. Clinical interpretation of these complex datasets requires development of suitable algorithms, a time consuming and tedious undertaking addresse...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Hooman H. Rashidi, Luke T. Dang, Samer Albahra, Resmi Ravindran, Imran H. Khan
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/4053b9a7594e4b98a4c70d5817cb61b7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!