Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hub...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:406216400ae242adb9a0f8c600fbfa6a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:406216400ae242adb9a0f8c600fbfa6a2021-11-14T12:15:30ZExploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling10.1038/s41524-021-00651-02057-3960https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00651-0https://doaj.org/toc/2057-3960Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.Pedram TavadzeReese BoucherGuillermo Avendaño-FrancoKeenan X. KocanSobhit SinghViviana Dovale-FareloWilfredo Ibarra-HernándezMatthew B. JohnsonDavid S. MebaneAldo H. RomeroNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Pedram Tavadze Reese Boucher Guillermo Avendaño-Franco Keenan X. Kocan Sobhit Singh Viviana Dovale-Farelo Wilfredo Ibarra-Hernández Matthew B. Johnson David S. Mebane Aldo H. Romero Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
description |
Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction. |
format |
article |
author |
Pedram Tavadze Reese Boucher Guillermo Avendaño-Franco Keenan X. Kocan Sobhit Singh Viviana Dovale-Farelo Wilfredo Ibarra-Hernández Matthew B. Johnson David S. Mebane Aldo H. Romero |
author_facet |
Pedram Tavadze Reese Boucher Guillermo Avendaño-Franco Keenan X. Kocan Sobhit Singh Viviana Dovale-Farelo Wilfredo Ibarra-Hernández Matthew B. Johnson David S. Mebane Aldo H. Romero |
author_sort |
Pedram Tavadze |
title |
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
title_short |
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
title_full |
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
title_fullStr |
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
title_full_unstemmed |
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling |
title_sort |
exploring dft+u parameter space with a bayesian calibration assisted by markov chain monte carlo sampling |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a |
work_keys_str_mv |
AT pedramtavadze exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT reeseboucher exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT guillermoavendanofranco exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT keenanxkocan exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT sobhitsingh exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT vivianadovalefarelo exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT wilfredoibarrahernandez exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT matthewbjohnson exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT davidsmebane exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling AT aldohromero exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling |
_version_ |
1718429341369499648 |