Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling

Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hub...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:406216400ae242adb9a0f8c600fbfa6a
record_format dspace
spelling oai:doaj.org-article:406216400ae242adb9a0f8c600fbfa6a2021-11-14T12:15:30ZExploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling10.1038/s41524-021-00651-02057-3960https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00651-0https://doaj.org/toc/2057-3960Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.Pedram TavadzeReese BoucherGuillermo Avendaño-FrancoKeenan X. KocanSobhit SinghViviana Dovale-FareloWilfredo Ibarra-HernándezMatthew B. JohnsonDavid S. MebaneAldo H. RomeroNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Pedram Tavadze
Reese Boucher
Guillermo Avendaño-Franco
Keenan X. Kocan
Sobhit Singh
Viviana Dovale-Farelo
Wilfredo Ibarra-Hernández
Matthew B. Johnson
David S. Mebane
Aldo H. Romero
Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
description Abstract The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.
format article
author Pedram Tavadze
Reese Boucher
Guillermo Avendaño-Franco
Keenan X. Kocan
Sobhit Singh
Viviana Dovale-Farelo
Wilfredo Ibarra-Hernández
Matthew B. Johnson
David S. Mebane
Aldo H. Romero
author_facet Pedram Tavadze
Reese Boucher
Guillermo Avendaño-Franco
Keenan X. Kocan
Sobhit Singh
Viviana Dovale-Farelo
Wilfredo Ibarra-Hernández
Matthew B. Johnson
David S. Mebane
Aldo H. Romero
author_sort Pedram Tavadze
title Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
title_short Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
title_full Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
title_fullStr Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
title_full_unstemmed Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling
title_sort exploring dft+u parameter space with a bayesian calibration assisted by markov chain monte carlo sampling
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/406216400ae242adb9a0f8c600fbfa6a
work_keys_str_mv AT pedramtavadze exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT reeseboucher exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT guillermoavendanofranco exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT keenanxkocan exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT sobhitsingh exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT vivianadovalefarelo exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT wilfredoibarrahernandez exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT matthewbjohnson exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT davidsmebane exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
AT aldohromero exploringdftuparameterspacewithabayesiancalibrationassistedbymarkovchainmontecarlosampling
_version_ 1718429341369499648