Combined FGFR and Akt pathway inhibition abrogates growth of FGFR1 overexpressing EGFR-TKI-resistant NSCLC cells
Abstract EGFR tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC) patients is inevitable. Identification of resistance mechanisms and corresponding targeting strategies can lead to more successful later-line treatment in many patients. Using spectrometry-based proteomics...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4079b23b742f40d7b05c71931a377a85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract EGFR tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC) patients is inevitable. Identification of resistance mechanisms and corresponding targeting strategies can lead to more successful later-line treatment in many patients. Using spectrometry-based proteomics, we identified increased fibroblast growth factor receptor 1 (FGFR1) expression and Akt activation across erlotinib, gefitinib, and osimertinib EGFR-TKI-resistant cell line models. We show that while combined EGFR-TKI and FGFR inhibition showed some efficacy, simultaneous inhibition of FGFR and Akt or PI3K induced superior synergistic growth inhibition of FGFR1-overexpressing EGFR-TKI-resistant NSCLC cells. This effect was confirmed in vivo. Only dual FGFR and Akt inhibition completely blocked the resistance-mediating signaling pathways downstream of Akt. Further, increased FGFR1 expression was associated with significantly lower PFS in EGFR-TKI-treated NSCLC patients, and increased FGFR1 were demonstrated in a few post- vs. pre-EGFR-TKI treatment clinical biopsies. The superior therapeutic benefit of combining FGFR and Akt inhibitors provide the rationale for clinical trials of this strategy. |
---|