A self-referenced in-situ arrival time monitor for X-ray free-electron lasers

Abstract We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and pic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael Diez, Andreas Galler, Sebastian Schulz, Christina Boemer, Ryan N. Coffee, Nick Hartmann, Rupert Heider, Martin S. Wagner, Wolfram Helml, Tetsuo Katayama, Tokushi Sato, Takahiro Sato, Makina Yabashi, Christian Bressler
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/407ecbf25db34d298729ec35ebb86784
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:407ecbf25db34d298729ec35ebb86784
record_format dspace
spelling oai:doaj.org-article:407ecbf25db34d298729ec35ebb867842021-12-02T12:14:56ZA self-referenced in-situ arrival time monitor for X-ray free-electron lasers10.1038/s41598-021-82597-32045-2322https://doaj.org/article/407ecbf25db34d298729ec35ebb867842021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82597-3https://doaj.org/toc/2045-2322Abstract We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30  $$\upmu $$ μ J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.Michael DiezAndreas GallerSebastian SchulzChristina BoemerRyan N. CoffeeNick HartmannRupert HeiderMartin S. WagnerWolfram HelmlTetsuo KatayamaTokushi SatoTakahiro SatoMakina YabashiChristian BresslerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Michael Diez
Andreas Galler
Sebastian Schulz
Christina Boemer
Ryan N. Coffee
Nick Hartmann
Rupert Heider
Martin S. Wagner
Wolfram Helml
Tetsuo Katayama
Tokushi Sato
Takahiro Sato
Makina Yabashi
Christian Bressler
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
description Abstract We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30  $$\upmu $$ μ J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
format article
author Michael Diez
Andreas Galler
Sebastian Schulz
Christina Boemer
Ryan N. Coffee
Nick Hartmann
Rupert Heider
Martin S. Wagner
Wolfram Helml
Tetsuo Katayama
Tokushi Sato
Takahiro Sato
Makina Yabashi
Christian Bressler
author_facet Michael Diez
Andreas Galler
Sebastian Schulz
Christina Boemer
Ryan N. Coffee
Nick Hartmann
Rupert Heider
Martin S. Wagner
Wolfram Helml
Tetsuo Katayama
Tokushi Sato
Takahiro Sato
Makina Yabashi
Christian Bressler
author_sort Michael Diez
title A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
title_short A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
title_full A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
title_fullStr A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
title_full_unstemmed A self-referenced in-situ arrival time monitor for X-ray free-electron lasers
title_sort self-referenced in-situ arrival time monitor for x-ray free-electron lasers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/407ecbf25db34d298729ec35ebb86784
work_keys_str_mv AT michaeldiez aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT andreasgaller aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT sebastianschulz aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT christinaboemer aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT ryanncoffee aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT nickhartmann aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT rupertheider aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT martinswagner aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT wolframhelml aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT tetsuokatayama aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT tokushisato aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT takahirosato aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT makinayabashi aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT christianbressler aselfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT michaeldiez selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT andreasgaller selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT sebastianschulz selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT christinaboemer selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT ryanncoffee selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT nickhartmann selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT rupertheider selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT martinswagner selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT wolframhelml selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT tetsuokatayama selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT tokushisato selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT takahirosato selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT makinayabashi selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
AT christianbressler selfreferencedinsituarrivaltimemonitorforxrayfreeelectronlasers
_version_ 1718394568501624832