Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy
Background: In recent years, deep learning has been widely used in a variety of ophthalmic diseases. As a common ophthalmic disease, meibomian gland dysfunction (MGD) has a unique phenotype in in-vivo laser confocal microscope imaging (VLCMI). The purpose of our study was to investigate a deep learn...
Guardado en:
Autores principales: | Ye-Ye Zhang, Hui Zhao, Jin-Yan Lin, Shi-Nan Wu, Xi-Wang Liu, Hong-Dan Zhang, Yi Shao, Wei-Feng Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4083ee8267a34952a837031f0b8f1a05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visible Meibomian Gland Structure Increases After Vectored Thermal Pulsation Treatment in Dry Eye Disease Patients with Meibomian Gland Dysfunction
por: Hura AS, et al.
Publicado: (2020) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
por: Shih-Lin Lin
Publicado: (2021) -
Meibomian Gland Morphology Changes After Cataract Surgery: A Contra-Lateral Eye Study
por: Pingjun Chang, et al.
Publicado: (2021) -
Evaluation of Meibomian Gland Dysfunction Among Ophthalmic Healthcare Workers
por: Chan AYY, et al.
Publicado: (2021) -
Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China
por: Tong Liu, et al.
Publicado: (2021)