On the asymptotic behavior of solutions of anisotropic viscoelastic body

Abstract The quasistatic problem of a viscoelastic body in a three-dimensional thin domain with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this system are assumed to vary with respect to the thickness ε. The asymptotic behavior of weak solution, when ε tends t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yassine Letoufa, Hamid Benseridi, Salah Boulaaras, Mourad Dilmi
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/40893079435747548d30cbbeadaa6573
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:40893079435747548d30cbbeadaa6573
record_format dspace
spelling oai:doaj.org-article:40893079435747548d30cbbeadaa65732021-11-14T12:11:07ZOn the asymptotic behavior of solutions of anisotropic viscoelastic body10.1186/s13661-021-01567-w1687-2770https://doaj.org/article/40893079435747548d30cbbeadaa65732021-11-01T00:00:00Zhttps://doi.org/10.1186/s13661-021-01567-whttps://doaj.org/toc/1687-2770Abstract The quasistatic problem of a viscoelastic body in a three-dimensional thin domain with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this system are assumed to vary with respect to the thickness ε. The asymptotic behavior of weak solution, when ε tends to zero, is proved, and the limit solution is identified in a new data system. We show that when the thin layer disappears, its traces form a new contact law between the rigid plane and the viscoelastic body. In which case, a generalized weak form equation is formulated, the uniqueness result for the limit problem is also proved.Yassine LetoufaHamid BenseridiSalah BoulaarasMourad DilmiSpringerOpenarticleAnisotropy domainAsymptotic approachViscoelastic bodyQuasistatic problemTresca lawWeak solutionAnalysisQA299.6-433ENBoundary Value Problems, Vol 2021, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Anisotropy domain
Asymptotic approach
Viscoelastic body
Quasistatic problem
Tresca law
Weak solution
Analysis
QA299.6-433
spellingShingle Anisotropy domain
Asymptotic approach
Viscoelastic body
Quasistatic problem
Tresca law
Weak solution
Analysis
QA299.6-433
Yassine Letoufa
Hamid Benseridi
Salah Boulaaras
Mourad Dilmi
On the asymptotic behavior of solutions of anisotropic viscoelastic body
description Abstract The quasistatic problem of a viscoelastic body in a three-dimensional thin domain with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this system are assumed to vary with respect to the thickness ε. The asymptotic behavior of weak solution, when ε tends to zero, is proved, and the limit solution is identified in a new data system. We show that when the thin layer disappears, its traces form a new contact law between the rigid plane and the viscoelastic body. In which case, a generalized weak form equation is formulated, the uniqueness result for the limit problem is also proved.
format article
author Yassine Letoufa
Hamid Benseridi
Salah Boulaaras
Mourad Dilmi
author_facet Yassine Letoufa
Hamid Benseridi
Salah Boulaaras
Mourad Dilmi
author_sort Yassine Letoufa
title On the asymptotic behavior of solutions of anisotropic viscoelastic body
title_short On the asymptotic behavior of solutions of anisotropic viscoelastic body
title_full On the asymptotic behavior of solutions of anisotropic viscoelastic body
title_fullStr On the asymptotic behavior of solutions of anisotropic viscoelastic body
title_full_unstemmed On the asymptotic behavior of solutions of anisotropic viscoelastic body
title_sort on the asymptotic behavior of solutions of anisotropic viscoelastic body
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/40893079435747548d30cbbeadaa6573
work_keys_str_mv AT yassineletoufa ontheasymptoticbehaviorofsolutionsofanisotropicviscoelasticbody
AT hamidbenseridi ontheasymptoticbehaviorofsolutionsofanisotropicviscoelasticbody
AT salahboulaaras ontheasymptoticbehaviorofsolutionsofanisotropicviscoelasticbody
AT mouraddilmi ontheasymptoticbehaviorofsolutionsofanisotropicviscoelasticbody
_version_ 1718429398862921728