Machine Learning Based Embedded Code Multi-Label Classification
With the development of Internet of Things (IoT) technology, embedded based electronic devices have penetrated every corner of our daily lives. As the brain of IoT devices, embedded based micro controller unit (MCU) plays an irreplaceable role. The functions of the MCUs are becoming more and more po...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/409aa0363f524f39af77883d77ea40eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:409aa0363f524f39af77883d77ea40eb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:409aa0363f524f39af77883d77ea40eb2021-11-18T00:01:24ZMachine Learning Based Embedded Code Multi-Label Classification2169-353610.1109/ACCESS.2021.3123498https://doaj.org/article/409aa0363f524f39af77883d77ea40eb2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9590539/https://doaj.org/toc/2169-3536With the development of Internet of Things (IoT) technology, embedded based electronic devices have penetrated every corner of our daily lives. As the brain of IoT devices, embedded based micro controller unit (MCU) plays an irreplaceable role. The functions of the MCUs are becoming more and more powerful and complicated, which brings huge challenges to embedded programmers. Embedded code, which is highly related to the hardware resources, differs from other popular programming code. The hardware configuration may be a big challenge to the programmers, who may only be good at software development and algorithm design. Online code searching can be time consuming and cannot guarantee an optimal approach. To solve this problem, in this paper, an embedded code classifier, which is designed to help embedded programmers to search for the most efficient code with precise tags, is demonstrated. A high quality embedded code dataset is built. A tag correlated multi-label machine learning model is developed for the embedded code dataset. The experimental results show that the proposed code dataset structure is proved to be more efficient on embedded code classification. The proposed embedded classifier algorithm shows a promising result on embedded code dataset. And it outperforms the traditional machine learning text classification models.Yu ZhouSuxia CuiYonghui WangIEEEarticleEmbedded code classifiermulti-labeltag-correlatedtext classificationElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 150187-150200 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Embedded code classifier multi-label tag-correlated text classification Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Embedded code classifier multi-label tag-correlated text classification Electrical engineering. Electronics. Nuclear engineering TK1-9971 Yu Zhou Suxia Cui Yonghui Wang Machine Learning Based Embedded Code Multi-Label Classification |
description |
With the development of Internet of Things (IoT) technology, embedded based electronic devices have penetrated every corner of our daily lives. As the brain of IoT devices, embedded based micro controller unit (MCU) plays an irreplaceable role. The functions of the MCUs are becoming more and more powerful and complicated, which brings huge challenges to embedded programmers. Embedded code, which is highly related to the hardware resources, differs from other popular programming code. The hardware configuration may be a big challenge to the programmers, who may only be good at software development and algorithm design. Online code searching can be time consuming and cannot guarantee an optimal approach. To solve this problem, in this paper, an embedded code classifier, which is designed to help embedded programmers to search for the most efficient code with precise tags, is demonstrated. A high quality embedded code dataset is built. A tag correlated multi-label machine learning model is developed for the embedded code dataset. The experimental results show that the proposed code dataset structure is proved to be more efficient on embedded code classification. The proposed embedded classifier algorithm shows a promising result on embedded code dataset. And it outperforms the traditional machine learning text classification models. |
format |
article |
author |
Yu Zhou Suxia Cui Yonghui Wang |
author_facet |
Yu Zhou Suxia Cui Yonghui Wang |
author_sort |
Yu Zhou |
title |
Machine Learning Based Embedded Code Multi-Label Classification |
title_short |
Machine Learning Based Embedded Code Multi-Label Classification |
title_full |
Machine Learning Based Embedded Code Multi-Label Classification |
title_fullStr |
Machine Learning Based Embedded Code Multi-Label Classification |
title_full_unstemmed |
Machine Learning Based Embedded Code Multi-Label Classification |
title_sort |
machine learning based embedded code multi-label classification |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/409aa0363f524f39af77883d77ea40eb |
work_keys_str_mv |
AT yuzhou machinelearningbasedembeddedcodemultilabelclassification AT suxiacui machinelearningbasedembeddedcodemultilabelclassification AT yonghuiwang machinelearningbasedembeddedcodemultilabelclassification |
_version_ |
1718425220067360768 |