Ultra-high rate of temperature increment from superparamagnetic nanoparticles for highly efficient hyperthermia

Abstract The magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments. However, the realization of its potential has been challenged owing to the limited heating fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jae-Hyeok Lee, Bosung Kim, Yongsub Kim, Sang-Koog Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/40c6bedc7bad423a8ae18c389b3ad82d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The magneto-thermal effect, which represents the conversion of magnetostatic energy to heat from magnetic materials, has been spotlighted for potential therapeutic usage in hyperthermia treatments. However, the realization of its potential has been challenged owing to the limited heating from the magnetic nanoparticles. Here, we explored a new-concept of magneto-thermal modality marked by low-power-driven, fast resonant spin-excitation followed by consequent energy dissipation, which concept has yet to be realized for current hyperthermia applications. We investigated the effect of spin resonance-mediated heat dissipation using superparamagnetic Fe3O4 nanoparticles and achieved an extraordinary initial temperature increment rate of more than 150 K/s, which is a significant increase in comparison to that for the conventional magnetic heat induction of nanoparticles. This work would offer highly efficient heat generation and precision wireless controllability for realization of magnetic-hyperthermia-based medical treatment.