Machine learning screening of bile acid-binding peptides in a peptide database derived from food proteins
Abstract Bioactive peptides (BPs) are protein fragments that exhibit a wide variety of physicochemical properties, such as basic, acidic, hydrophobic, and hydrophilic properties; thus, they have the potential to interact with a variety of biomolecules, whereas neither carbohydrates nor fatty acids h...
Guardado en:
Autores principales: | Kento Imai, Kazunori Shimizu, Hiroyuki Honda |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/40e03eb184ff4eedb8df4a714d421521 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database
por: Satoko Hiura, et al.
Publicado: (2021) -
Antimicrobial Peptides: An Update on Classifications and Databases
por: Ahmer Bin Hafeez, et al.
Publicado: (2021) -
A fluorescent protein scaffold for presenting structurally constrained peptides provides an effective screening system to identify high affinity target-binding peptides.
por: Tetsuya Kadonosono, et al.
Publicado: (2014) -
Editorial: Proglucagon-Derived Peptides
por: Peter R. Flatt, et al.
Publicado: (2021) -
Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling
por: Willem-Jan Keune, et al.
Publicado: (2016)