Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction
The goal of this paper is to optimally combine day-ahead solar and demand forecasts for the optimal battery schedule of a hybrid solar and battery farm connected to a distribution station. The objective is to achieve the maximum daily peak load reduction and charge battery with maximum solar photovo...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/40e9cc23d3c844a8b5fa892ac6aaf47f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:40e9cc23d3c844a8b5fa892ac6aaf47f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:40e9cc23d3c844a8b5fa892ac6aaf47f2021-11-25T17:28:49ZOptimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction10.3390/en142277941996-1073https://doaj.org/article/40e9cc23d3c844a8b5fa892ac6aaf47f2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/22/7794https://doaj.org/toc/1996-1073The goal of this paper is to optimally combine day-ahead solar and demand forecasts for the optimal battery schedule of a hybrid solar and battery farm connected to a distribution station. The objective is to achieve the maximum daily peak load reduction and charge battery with maximum solar photovoltaic energy. The innovative part of the paper lies in the treatment for the errors in solar and demand forecasts to then optimize the battery scheduler. To test the effectiveness of the proposed methodology, it was applied in the data science challenge Presumed Open Data 2021. With the historical Numerical Weather Prediction (NWP) data, solar power plant generation and distribution-level demand data provided, the proposed methodology was tested for four different seasons. The evaluation metric used is the peak reduction score (defined in the paper), and our approach has improved this KPI from 82.84 to 89.83. The solution developed achieved a final place of 5th (out of 55 teams) in the challenge.Gergo BartaBenedek PasztorVenkat PravaMDPI AGarticleforecasting competitionbattery schedulingelectric load forecastingsolar power forecastinghybrid solar plantTechnologyTENEnergies, Vol 14, Iss 7794, p 7794 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
forecasting competition battery scheduling electric load forecasting solar power forecasting hybrid solar plant Technology T |
spellingShingle |
forecasting competition battery scheduling electric load forecasting solar power forecasting hybrid solar plant Technology T Gergo Barta Benedek Pasztor Venkat Prava Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
description |
The goal of this paper is to optimally combine day-ahead solar and demand forecasts for the optimal battery schedule of a hybrid solar and battery farm connected to a distribution station. The objective is to achieve the maximum daily peak load reduction and charge battery with maximum solar photovoltaic energy. The innovative part of the paper lies in the treatment for the errors in solar and demand forecasts to then optimize the battery scheduler. To test the effectiveness of the proposed methodology, it was applied in the data science challenge Presumed Open Data 2021. With the historical Numerical Weather Prediction (NWP) data, solar power plant generation and distribution-level demand data provided, the proposed methodology was tested for four different seasons. The evaluation metric used is the peak reduction score (defined in the paper), and our approach has improved this KPI from 82.84 to 89.83. The solution developed achieved a final place of 5th (out of 55 teams) in the challenge. |
format |
article |
author |
Gergo Barta Benedek Pasztor Venkat Prava |
author_facet |
Gergo Barta Benedek Pasztor Venkat Prava |
author_sort |
Gergo Barta |
title |
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
title_short |
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
title_full |
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
title_fullStr |
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
title_full_unstemmed |
Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction |
title_sort |
optimized charge controller schedule in hybrid solar-battery farms for peak load reduction |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/40e9cc23d3c844a8b5fa892ac6aaf47f |
work_keys_str_mv |
AT gergobarta optimizedchargecontrollerscheduleinhybridsolarbatteryfarmsforpeakloadreduction AT benedekpasztor optimizedchargecontrollerscheduleinhybridsolarbatteryfarmsforpeakloadreduction AT venkatprava optimizedchargecontrollerscheduleinhybridsolarbatteryfarmsforpeakloadreduction |
_version_ |
1718412279761862656 |