Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering
Abstract Extracellular matrix (ECM) provides structural support for cell growth, attachments and proliferation, which greatly impact cell fate. Marine macroalgae species Ulva sp. and Cladophora sp. were selected for their structural variations, porous and fibrous respectively, and evaluated as alter...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4106eeafc7de4ae593cf1b1c3cf54467 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4106eeafc7de4ae593cf1b1c3cf54467 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4106eeafc7de4ae593cf1b1c3cf544672021-12-02T18:24:53ZSeaweed cellulose scaffolds derived from green macroalgae for tissue engineering10.1038/s41598-021-90903-22045-2322https://doaj.org/article/4106eeafc7de4ae593cf1b1c3cf544672021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90903-2https://doaj.org/toc/2045-2322Abstract Extracellular matrix (ECM) provides structural support for cell growth, attachments and proliferation, which greatly impact cell fate. Marine macroalgae species Ulva sp. and Cladophora sp. were selected for their structural variations, porous and fibrous respectively, and evaluated as alternative ECM candidates. Decellularization–recellularization approach was used to fabricate seaweed cellulose-based scaffolds for in-vitro mammalian cell growth. Both scaffolds were confirmed nontoxic to fibroblasts, indicated by high viability for up to 40 days in culture. Each seaweed cellulose structure demonstrated distinct impact on cell behavior and proliferation rates. The Cladophora sp. scaffold promoted elongated cells spreading along its fibers’ axis, and a gradual linear cell growth, while the Ulva sp. porous surface, facilitated rapid cell growth in all directions, reaching saturation at week 3. As such, seaweed-cellulose is an environmentally, biocompatible novel biomaterial, with structural variations that hold a great potential for diverse biomedical applications, while promoting aquaculture and ecological agenda.Nurit Bar-ShaiOrna Sharabani-YosefMeiron ZollmannAyelet LesmanAlexander GolbergNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Nurit Bar-Shai Orna Sharabani-Yosef Meiron Zollmann Ayelet Lesman Alexander Golberg Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
description |
Abstract Extracellular matrix (ECM) provides structural support for cell growth, attachments and proliferation, which greatly impact cell fate. Marine macroalgae species Ulva sp. and Cladophora sp. were selected for their structural variations, porous and fibrous respectively, and evaluated as alternative ECM candidates. Decellularization–recellularization approach was used to fabricate seaweed cellulose-based scaffolds for in-vitro mammalian cell growth. Both scaffolds were confirmed nontoxic to fibroblasts, indicated by high viability for up to 40 days in culture. Each seaweed cellulose structure demonstrated distinct impact on cell behavior and proliferation rates. The Cladophora sp. scaffold promoted elongated cells spreading along its fibers’ axis, and a gradual linear cell growth, while the Ulva sp. porous surface, facilitated rapid cell growth in all directions, reaching saturation at week 3. As such, seaweed-cellulose is an environmentally, biocompatible novel biomaterial, with structural variations that hold a great potential for diverse biomedical applications, while promoting aquaculture and ecological agenda. |
format |
article |
author |
Nurit Bar-Shai Orna Sharabani-Yosef Meiron Zollmann Ayelet Lesman Alexander Golberg |
author_facet |
Nurit Bar-Shai Orna Sharabani-Yosef Meiron Zollmann Ayelet Lesman Alexander Golberg |
author_sort |
Nurit Bar-Shai |
title |
Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
title_short |
Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
title_full |
Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
title_fullStr |
Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
title_full_unstemmed |
Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
title_sort |
seaweed cellulose scaffolds derived from green macroalgae for tissue engineering |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4106eeafc7de4ae593cf1b1c3cf54467 |
work_keys_str_mv |
AT nuritbarshai seaweedcellulosescaffoldsderivedfromgreenmacroalgaefortissueengineering AT ornasharabaniyosef seaweedcellulosescaffoldsderivedfromgreenmacroalgaefortissueengineering AT meironzollmann seaweedcellulosescaffoldsderivedfromgreenmacroalgaefortissueengineering AT ayeletlesman seaweedcellulosescaffoldsderivedfromgreenmacroalgaefortissueengineering AT alexandergolberg seaweedcellulosescaffoldsderivedfromgreenmacroalgaefortissueengineering |
_version_ |
1718378090375151616 |