Predictive learning as a network mechanism for extracting low-dimensional latent space representations

Neural networks trained using predictive models generate representations that recover the underlying low-dimensional latent structure in the data. Here, the authors demonstrate that a network trained on a spatial navigation task generates place-related neural activations similar to those observed in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stefano Recanatesi, Matthew Farrell, Guillaume Lajoie, Sophie Deneve, Mattia Rigotti, Eric Shea-Brown
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/411ac526db244399bdd114924abfd060
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Neural networks trained using predictive models generate representations that recover the underlying low-dimensional latent structure in the data. Here, the authors demonstrate that a network trained on a spatial navigation task generates place-related neural activations similar to those observed in the hippocampus and show that these are related to the latent structure.