Dense cellular segmentation for EM using 2D–3D neural network ensembles
Abstract Biologists who use electron microscopy (EM) images to build nanoscale 3D models of whole cells and their organelles have historically been limited to small numbers of cells and cellular features due to constraints in imaging and analysis. This has been a major factor limiting insight into t...
Guardado en:
Autores principales: | Matthew D. Guay, Zeyad A. S. Emam, Adam B. Anderson, Maria A. Aronova, Irina D. Pokrovskaya, Brian Storrie, Richard D. Leapman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41216f2c37bc4441ab20307a221baaf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
3D ultrastructural analysis of α‐granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets
por: Irina D. Pokrovskaya, et al.
Publicado: (2020) -
Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates
por: Sung W. Rhee, et al.
Publicado: (2021) -
Diagnosis of Alzheimer’s Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network
por: Peng Zhang, et al.
Publicado: (2021) -
Signatures of personality on dense 3D facial images
por: Sile Hu, et al.
Publicado: (2017) -
Relaxation of a dense ensemble of spins in diamond under a continuous microwave driving field
por: Jeson Chen, et al.
Publicado: (2021)