Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/412254c245364c069c2a4448a132d6dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:412254c245364c069c2a4448a132d6dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:412254c245364c069c2a4448a132d6dd2021-12-02T15:34:52ZPredicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features10.1038/ncomms124742041-1723https://doaj.org/article/412254c245364c069c2a4448a132d6dd2016-08-01T00:00:00Zhttps://doi.org/10.1038/ncomms12474https://doaj.org/toc/2041-1723Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.Kun-Hsing YuCe ZhangGerald J. BerryRuss B. AltmanChristopher RéDaniel L. RubinMichael SnyderNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Kun-Hsing Yu Ce Zhang Gerald J. Berry Russ B. Altman Christopher Ré Daniel L. Rubin Michael Snyder Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
description |
Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses. |
format |
article |
author |
Kun-Hsing Yu Ce Zhang Gerald J. Berry Russ B. Altman Christopher Ré Daniel L. Rubin Michael Snyder |
author_facet |
Kun-Hsing Yu Ce Zhang Gerald J. Berry Russ B. Altman Christopher Ré Daniel L. Rubin Michael Snyder |
author_sort |
Kun-Hsing Yu |
title |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
title_short |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
title_full |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
title_fullStr |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
title_full_unstemmed |
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
title_sort |
predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/412254c245364c069c2a4448a132d6dd |
work_keys_str_mv |
AT kunhsingyu predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT cezhang predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT geraldjberry predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT russbaltman predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT christopherre predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT daniellrubin predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures AT michaelsnyder predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures |
_version_ |
1718386714139951104 |