Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features

Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.

Guardado en:
Detalles Bibliográficos
Autores principales: Kun-Hsing Yu, Ce Zhang, Gerald J. Berry, Russ B. Altman, Christopher Ré, Daniel L. Rubin, Michael Snyder
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/412254c245364c069c2a4448a132d6dd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:412254c245364c069c2a4448a132d6dd
record_format dspace
spelling oai:doaj.org-article:412254c245364c069c2a4448a132d6dd2021-12-02T15:34:52ZPredicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features10.1038/ncomms124742041-1723https://doaj.org/article/412254c245364c069c2a4448a132d6dd2016-08-01T00:00:00Zhttps://doi.org/10.1038/ncomms12474https://doaj.org/toc/2041-1723Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.Kun-Hsing YuCe ZhangGerald J. BerryRuss B. AltmanChristopher RéDaniel L. RubinMichael SnyderNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kun-Hsing Yu
Ce Zhang
Gerald J. Berry
Russ B. Altman
Christopher Ré
Daniel L. Rubin
Michael Snyder
Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
description Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.
format article
author Kun-Hsing Yu
Ce Zhang
Gerald J. Berry
Russ B. Altman
Christopher Ré
Daniel L. Rubin
Michael Snyder
author_facet Kun-Hsing Yu
Ce Zhang
Gerald J. Berry
Russ B. Altman
Christopher Ré
Daniel L. Rubin
Michael Snyder
author_sort Kun-Hsing Yu
title Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
title_short Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
title_full Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
title_fullStr Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
title_full_unstemmed Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
title_sort predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/412254c245364c069c2a4448a132d6dd
work_keys_str_mv AT kunhsingyu predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT cezhang predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT geraldjberry predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT russbaltman predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT christopherre predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT daniellrubin predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
AT michaelsnyder predictingnonsmallcelllungcancerprognosisbyfullyautomatedmicroscopicpathologyimagefeatures
_version_ 1718386714139951104