Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.
Enregistré dans:
Auteurs principaux: | Kun-Hsing Yu, Ce Zhang, Gerald J. Berry, Russ B. Altman, Christopher Ré, Daniel L. Rubin, Michael Snyder |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/412254c245364c069c2a4448a132d6dd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fully-automated root image analysis (faRIA)
par: Narendra Narisetti, et autres
Publié: (2021) -
Fully Featured vs. Lean-and-Mean?
par: Jon Baggaley
Publié: (2002) -
Fully Automated Direct Perfluorocarbon Liquid-Silicone Oil Exchange
par: Ahmad KT, et autres
Publié: (2020) -
Prediction of Amyloid Positivity in Mild Cognitive Impairment Using Fully Automated Brain Segmentation Software
par: Kang KM, et autres
Publié: (2020) -
Towards a fully automated algorithm driven platform for biosystems design
par: Mohammad HamediRad, et autres
Publié: (2019)