Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
Diagnosis of lung cancer through manual histopathology evaluation is insufficient to predict patient survival. Here, the authors use computerized image processing to identify diagnostically relevant image features and use these features to distinguish lung cancer patients with different prognoses.
Guardado en:
Autores principales: | Kun-Hsing Yu, Ce Zhang, Gerald J. Berry, Russ B. Altman, Christopher Ré, Daniel L. Rubin, Michael Snyder |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/412254c245364c069c2a4448a132d6dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully-automated root image analysis (faRIA)
por: Narendra Narisetti, et al.
Publicado: (2021) -
Fully Featured vs. Lean-and-Mean?
por: Jon Baggaley
Publicado: (2002) -
Fully Automated Direct Perfluorocarbon Liquid-Silicone Oil Exchange
por: Ahmad KT, et al.
Publicado: (2020) -
Prediction of Amyloid Positivity in Mild Cognitive Impairment Using Fully Automated Brain Segmentation Software
por: Kang KM, et al.
Publicado: (2020) -
Towards a fully automated algorithm driven platform for biosystems design
por: Mohammad HamediRad, et al.
Publicado: (2019)