Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer
In the presented research article, the intelligence based numerical computation of artificial neural network backpropagated with Levenberg-Marquardt algorithm has been developed to analyze the novel ferrofluid flow model in the presence of magnetic dipole. Heat transfer effects are also incorporated...
Guardado en:
Autores principales: | Muhammad Shoaib, Muhammad Asif Zahoor Raja, Imrana Farhat, Zahir Shah, Poom Kumam, Saeed Islam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/412f9164756247569760ba7861fa23fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Numerical Investigations through ANNs for Solving COVID-19 Model
por: Muhammad Umar, et al.
Publicado: (2021) -
Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid
por: Jawaher Lafi Aljohani, et al.
Publicado: (2021) -
The atmospheric model of neural networks based on the improved Levenberg-Marquardt algorithm
por: Cui Wenhui, et al.
Publicado: (2021) -
Influence of MHD Hybrid Ferrofluid Flow on Exponentially Stretching/Shrinking Surface with Heat Source/Sink under Stagnation Point Region
por: Nur Syazana Anuar, et al.
Publicado: (2021) -
DETERMINACIÓN DE LOS PARÁMETROS DEL MODELO DE FLORY-HUGGINS PARA ESTIMACIÓN DEL PUNTO DE NUBE DE SURFACTANTES NO IÓNICOS
por: Araújo,Alessandro Alisson de L, et al.
Publicado: (2014)