Data-driven identification of diagnostically useful extrastriatal signal in dopamine transporter SPECT using explainable AI
Abstract This study used explainable artificial intelligence for data-driven identification of extrastriatal brain regions that can contribute to the interpretation of dopamine transporter SPECT with 123I-FP-CIT in parkinsonian syndromes. A total of 1306 123I-FP-CIT-SPECT were included retrospective...
Guardado en:
Autores principales: | Mahmood Nazari, Andreas Kluge, Ivayla Apostolova, Susanne Klutmann, Sharok Kimiaei, Michael Schroeder, Ralph Buchert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/413a6f3cef2541759c9ff4545fdd65d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dopamine Transporter SPECT Imaging in Corticobasal Syndrome.
por: Roberto Cilia, et al.
Publicado: (2011) -
Towards Explainable Augmented Intelligence (AI) for Crack Characterization
por: Larissa Fradkin, et al.
Publicado: (2021) -
DEEPCUBE: Explainable AI Pipelines for Big Copernicus Data
por: Chiara Gervasi, et al.
Publicado: (2021) -
Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
por: Francisco S. Marcondes, et al.
Publicado: (2021) -
Explainable AI for Data-Driven Feedback and Intelligent Action Recommendations to Support Students Self-Regulation
por: Muhammad Afzaal, et al.
Publicado: (2021)