Bayesian Deep Neural Network to Compensate for Current Transformer Saturation
Current transformer saturation has a negative effect on the operation of IEDs, resulting in their malfunction. Here, we present a technique to compensate for saturated waveforms using Bayesian Deep Neural Network (BDNN) comprising Deep Neural Network (DNN) and Bayesian optimization (BO). DNN, that u...
Guardado en:
Autores principales: | Sopheap Key, Sang-Hee Kang, Nam-Ho Lee, Soon-Ryul Nam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4147964eba1148ce94d3571bf1d32501 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of Mathematical Methods for Compensating a Current Signal under Current Transformers Saturation Conditions
por: Ismoil Odinaev, et al.
Publicado: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
por: Mingwei Wang, et al.
Publicado: (2020) -
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Imene Mitiche, et al.
Publicado: (2021) -
Rate-Distortion Optimized Encoding for Deep Image Compression
por: Michael Schafer, et al.
Publicado: (2021)