Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review

Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the difference between p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Keltoum Khechba, Ahmed Laamrani, Driss Dhiba, Khalil Misbah, Abdelghani Chehbouni
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4156995589a14429ad89f6f9058d9dbd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the difference between potential yield and actual farmer yield). To this end, crop yield gap practices in African countries need to be understood to fill this gap while decreasing the environmental impacts of agricultural systems. For instance, the variability of yields has been demonstrated to be strongly controlled by soil fertilizer use, irrigation management, soil attribute, and the climate. Consequently, the quantitative assessment and mapping information of soil attributes such as nitrogen (N), phosphorus (P), potassium (K), soil organic carbon (SOC), moisture content (MC), and soil texture (i.e., clay, sand and silt contents) on the ground are essential to potentially reducing the yield gap. However, to assess, measure, and monitor these soil yield-related parameters in the field, there is a need for rapid, accurate, and inexpensive methods. Recent advances in remote sensing technologies and high computational performances offer a unique opportunity to implement cost-effective spatiotemporal methods for estimating crop yield with important levels of scalability. However, researchers and scientists in Africa are not taking advantage of the opportunity of increasingly available geospatial remote sensing technologies and data for yield studies. The objectives of this report are to (i) conduct a review of scientific literature on the current status of African yield gap analysis research and their variation in regard to soil properties management by using remote sensing techniques; (ii) review and describe optimal yield practices in Africa; and (iii) identify gaps and limitations to higher yields in African smallholder farms and propose possible improvements. Our literature reviewed 80 publications and covered a period of 22 years (1998-2020) over many selected African countries with a potential yield improvement. Our results found that (i) the number of agriculture yield-focused remote sensing studies has gradually increased, with the largest proportion of studies published during the last 15 years; (ii) most studies were conducted exclusively using multispectral Landsat and Sentinel sensors; and (iii) over the past decade, hyperspectral imagery has contributed to a better understanding of yield gap analysis compared to multispectral imagery; (iv) soil nutrients (i.e., NPK) are not the main factor influencing the studied crop productivity in Africa, whereas clay, SOC, and soil pH were the most examined soil properties in prior papers.