A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium
Lithium-based batteries employing silicon anodes and sulfur cathodes are promising for combining low cost and high capacity, but have been limited in terms of cycling stability. Here authors present cycling and characterization data supporting beneficial synergies between a selenium disulfide cathod...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4158e9c3306e463daea9b778ce11baa1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Lithium-based batteries employing silicon anodes and sulfur cathodes are promising for combining low cost and high capacity, but have been limited in terms of cycling stability. Here authors present cycling and characterization data supporting beneficial synergies between a selenium disulfide cathode and a silicon anode. |
---|