Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO
Abstract The processing quality of the block hole system affects the working performance of the marine diesel engine block directly. Choosing an appropriate combination of process parameters is a prerequisite to improving the accuracy of the block hole system. Uncertain fluctuations of process param...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/416196e2ff0a4268ba757ef799c3dbfc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:416196e2ff0a4268ba757ef799c3dbfc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:416196e2ff0a4268ba757ef799c3dbfc2021-11-14T12:19:47ZReliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO10.1038/s41598-021-01567-x2045-2322https://doaj.org/article/416196e2ff0a4268ba757ef799c3dbfc2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01567-xhttps://doaj.org/toc/2045-2322Abstract The processing quality of the block hole system affects the working performance of the marine diesel engine block directly. Choosing an appropriate combination of process parameters is a prerequisite to improving the accuracy of the block hole system. Uncertain fluctuations of process parameters during the machining process would affect the process reliability of the block hole system, resulting in an ultra-poor accuracy. For this reason, the RBF method is used to establish the relationship between the verticality of the cylinder hole and process parameters, including cutting speed, depth of cut, and feed rate. The minimum cylinder hole verticality is taken as the goal and the process reliability constraints of the cylinder hole are set based on Monte Carlo, a reliability optimization model of processing parameters for cylinder hole is established in this paper. Meanwhile, an improved particle swarm algorithm was designed to solve the model, and eventually, the global optimal combination of process parameters for the cylinder hole processing of the diesel engine block in the reliability stable region was obtained.Honggen ZhouWeibin YangLi SunXuwen JingGuochao LiLiping CaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Honggen Zhou Weibin Yang Li Sun Xuwen Jing Guochao Li Liping Cao Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
description |
Abstract The processing quality of the block hole system affects the working performance of the marine diesel engine block directly. Choosing an appropriate combination of process parameters is a prerequisite to improving the accuracy of the block hole system. Uncertain fluctuations of process parameters during the machining process would affect the process reliability of the block hole system, resulting in an ultra-poor accuracy. For this reason, the RBF method is used to establish the relationship between the verticality of the cylinder hole and process parameters, including cutting speed, depth of cut, and feed rate. The minimum cylinder hole verticality is taken as the goal and the process reliability constraints of the cylinder hole are set based on Monte Carlo, a reliability optimization model of processing parameters for cylinder hole is established in this paper. Meanwhile, an improved particle swarm algorithm was designed to solve the model, and eventually, the global optimal combination of process parameters for the cylinder hole processing of the diesel engine block in the reliability stable region was obtained. |
format |
article |
author |
Honggen Zhou Weibin Yang Li Sun Xuwen Jing Guochao Li Liping Cao |
author_facet |
Honggen Zhou Weibin Yang Li Sun Xuwen Jing Guochao Li Liping Cao |
author_sort |
Honggen Zhou |
title |
Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
title_short |
Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
title_full |
Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
title_fullStr |
Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
title_full_unstemmed |
Reliability optimization of process parameters for marine diesel engine block hole system machining using improved PSO |
title_sort |
reliability optimization of process parameters for marine diesel engine block hole system machining using improved pso |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/416196e2ff0a4268ba757ef799c3dbfc |
work_keys_str_mv |
AT honggenzhou reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso AT weibinyang reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso AT lisun reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso AT xuwenjing reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso AT guochaoli reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso AT lipingcao reliabilityoptimizationofprocessparametersformarinedieselengineblockholesystemmachiningusingimprovedpso |
_version_ |
1718429282681749504 |