A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
To improve the accuracy of user implicit rating prediction, we combine the traditional latent factor model (LFM) and bidirectional gated recurrent unit neural network (BiGRU) model to propose a hybrid model that deeply mines the latent semantics in the unstructured content of the text and generates...
Enregistré dans:
Auteurs principaux: | Xu Zhao, Hui Kang, Tie Feng, Chenkun Meng, Ziqing Nie |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/41802f3dbc0e436ebed02f51ce2da93e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
par: Qiannan Zhu, et autres
Publié: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
par: Balduíno César Mateus, et autres
Publié: (2021) -
A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring
par: Die Liu, et autres
Publié: (2021) -
Comparative Analysis of Performance between Multimodal Implementation of Chatbot Based on News Classification Data Using Categories
par: Prasnurzaki Anki, et autres
Publié: (2021) -
A Gold Futures Price Forecast Model Based on SGRU-AM
par: Jingyang Wang, et autres
Publié: (2021)