A Hybrid Model Based on LFM and BiGRU Toward Research Paper Recommendation
To improve the accuracy of user implicit rating prediction, we combine the traditional latent factor model (LFM) and bidirectional gated recurrent unit neural network (BiGRU) model to propose a hybrid model that deeply mines the latent semantics in the unstructured content of the text and generates...
Guardado en:
Autores principales: | Xu Zhao, Hui Kang, Tie Feng, Chenkun Meng, Ziqing Nie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41802f3dbc0e436ebed02f51ce2da93e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring
por: Die Liu, et al.
Publicado: (2021) -
Comparative Analysis of Performance between Multimodal Implementation of Chatbot Based on News Classification Data Using Categories
por: Prasnurzaki Anki, et al.
Publicado: (2021) -
A Gold Futures Price Forecast Model Based on SGRU-AM
por: Jingyang Wang, et al.
Publicado: (2021)