Behavioral Assessment and Evaluation of Innovative Hollow Glue-Laminated Timber Elements

Due to the growing need to preserve our planet and reduce carbon emissions during construction, the use of the only carbon-absorbing material, timber, is increasingly being imposed. In addition to the requirement of reducing emissions, there is a necessity for the shortest possible construction time...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nikola Perković, Vlatka Rajčić, Monika Pranjić
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
FEM
T
Acceso en línea:https://doaj.org/article/418197a220ff4e68983d1e2c745a9147
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Due to the growing need to preserve our planet and reduce carbon emissions during construction, the use of the only carbon-absorbing material, timber, is increasingly being imposed. In addition to the requirement of reducing emissions, there is a necessity for the shortest possible construction time and the minimum use of construction machinery, which has led to the development of prefabricated construction systems. This paper deals with the innovative, hollow, glue-laminated timber elements which are intended for modular construction. Comparing this new system with existing modular systems, the main features and behavior of the constitutive elements, i.e., the hollow, glue-laminated timber elements, are presented. Experimental and numerical analysis of the mechanical performance of the timber elements was carried out and a comparative analysis of the behavior of two different types of hollow timber elements was conducted. The finite element method was used to predict the behavior of this innovative structural system. The results are compared with the analytical procedure to provide a background for the development of standardized methods for the design of timber structures.