Molecular function recognition by supervised projection pursuit machine learning
Abstract Identifying mechanisms that control molecular function is a significant challenge in pharmaceutical science and molecular engineering. Here, we present a novel projection pursuit recurrent neural network to identify functional mechanisms in the context of iterative supervised machine learni...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4188accaacb94107ab6e9dd075021902 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Identifying mechanisms that control molecular function is a significant challenge in pharmaceutical science and molecular engineering. Here, we present a novel projection pursuit recurrent neural network to identify functional mechanisms in the context of iterative supervised machine learning for discovery-based design optimization. Molecular function recognition is achieved by pairing experiments that categorize systems with digital twin molecular dynamics simulations to generate working hypotheses. Feature extraction decomposes emergent properties of a system into a complete set of basis vectors. Feature selection requires signal-to-noise, statistical significance, and clustering quality to concurrently surpass acceptance levels. Formulated as a multivariate description of differences and similarities between systems, the data-driven working hypothesis is refined by analyzing new systems prioritized by a discovery-likelihood. Utility and generality are demonstrated on several benchmarks, including the elucidation of antibiotic resistance in TEM-52 beta-lactamase. The software is freely available, enabling turnkey analysis of massive data streams found in computational biology and material science. |
---|