Gene expression profiles characterize inflammation stages in the acute lung injury in mice.

Acute Lung Injury (ALI) carries about 50 percent mortality and is frequently associated with an infection (sepsis). Life-support treatment with mechanical ventilation rescues many patients, although superimposed infection or multiple organ failure can result in death. The outcome of a patient develo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Isabelle Lesur, Julien Textoris, Béatrice Loriod, Cécile Courbon, Stéphane Garcia, Marc Leone, Catherine Nguyen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/419340c2133145949d9e92671a6e5036
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:419340c2133145949d9e92671a6e5036
record_format dspace
spelling oai:doaj.org-article:419340c2133145949d9e92671a6e50362021-12-02T20:20:14ZGene expression profiles characterize inflammation stages in the acute lung injury in mice.1932-620310.1371/journal.pone.0011485https://doaj.org/article/419340c2133145949d9e92671a6e50362010-07-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20628605/?tool=EBIhttps://doaj.org/toc/1932-6203Acute Lung Injury (ALI) carries about 50 percent mortality and is frequently associated with an infection (sepsis). Life-support treatment with mechanical ventilation rescues many patients, although superimposed infection or multiple organ failure can result in death. The outcome of a patient developing sepsis depends on two factors: the infection and the pre-existing inflammation. In this study, we described each stage of the inflammation process using a transcriptional approach and an animal model. Female C57BL6/J mice received an intravenous oleic acid injection to induce an acute lung injury (ALI). Lung expression patterns were analyzed using a 9900 cDNA mouse microarray (MUSV29K). Our gene-expression analysis revealed marked changes in the immune and inflammatory response metabolic pathways, notably lipid metabolism and transcription. The early stage (1 hour-1.5 hours) is characterized by a pro-inflammatory immune response. Later (3 hours-4 hours), the immune cells migrate into inflamed tissues through interaction with vascular endothelial cells. Finally, at late stages of lung inflammation (18 hours-24 hours), metabolism is deeply disturbed. Highly expressed pro-inflammatory cytokines activate transcription of many genes and lipid metabolism. In this study, we described a global overview of critical events occurring during lung inflammation which is essential to understand infectious pathologies such as sepsis where inflammation and infection are intertwined. Based on these data, it becomes possible to isolate the impact of a pathogen at the transcriptional level from the global gene expression modifications resulting from the infection associated with the inflammation.Isabelle LesurJulien TextorisBéatrice LoriodCécile CourbonStéphane GarciaMarc LeoneCatherine NguyenPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 7, p e11485 (2010)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Isabelle Lesur
Julien Textoris
Béatrice Loriod
Cécile Courbon
Stéphane Garcia
Marc Leone
Catherine Nguyen
Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
description Acute Lung Injury (ALI) carries about 50 percent mortality and is frequently associated with an infection (sepsis). Life-support treatment with mechanical ventilation rescues many patients, although superimposed infection or multiple organ failure can result in death. The outcome of a patient developing sepsis depends on two factors: the infection and the pre-existing inflammation. In this study, we described each stage of the inflammation process using a transcriptional approach and an animal model. Female C57BL6/J mice received an intravenous oleic acid injection to induce an acute lung injury (ALI). Lung expression patterns were analyzed using a 9900 cDNA mouse microarray (MUSV29K). Our gene-expression analysis revealed marked changes in the immune and inflammatory response metabolic pathways, notably lipid metabolism and transcription. The early stage (1 hour-1.5 hours) is characterized by a pro-inflammatory immune response. Later (3 hours-4 hours), the immune cells migrate into inflamed tissues through interaction with vascular endothelial cells. Finally, at late stages of lung inflammation (18 hours-24 hours), metabolism is deeply disturbed. Highly expressed pro-inflammatory cytokines activate transcription of many genes and lipid metabolism. In this study, we described a global overview of critical events occurring during lung inflammation which is essential to understand infectious pathologies such as sepsis where inflammation and infection are intertwined. Based on these data, it becomes possible to isolate the impact of a pathogen at the transcriptional level from the global gene expression modifications resulting from the infection associated with the inflammation.
format article
author Isabelle Lesur
Julien Textoris
Béatrice Loriod
Cécile Courbon
Stéphane Garcia
Marc Leone
Catherine Nguyen
author_facet Isabelle Lesur
Julien Textoris
Béatrice Loriod
Cécile Courbon
Stéphane Garcia
Marc Leone
Catherine Nguyen
author_sort Isabelle Lesur
title Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
title_short Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
title_full Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
title_fullStr Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
title_full_unstemmed Gene expression profiles characterize inflammation stages in the acute lung injury in mice.
title_sort gene expression profiles characterize inflammation stages in the acute lung injury in mice.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/419340c2133145949d9e92671a6e5036
work_keys_str_mv AT isabellelesur geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT julientextoris geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT beatriceloriod geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT cecilecourbon geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT stephanegarcia geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT marcleone geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
AT catherinenguyen geneexpressionprofilescharacterizeinflammationstagesintheacutelunginjuryinmice
_version_ 1718374161540186112