Riesz means on homogeneous trees
Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp(𝕋), 1 ≤ p ≤ 2, then the Riesz means SzR (f) converge to f everywhere as R → ∞, whenever Re z > 0.
Guardado en:
Autor principal: | Papageorgiou Effie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/419417f3a2bd4b30bfc711a86ff42cd0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the stability of harmonic maps under the homogeneous Ricci flow
por: Prado Rafaela F. do, et al.
Publicado: (2018) -
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
por: Le Donne Enrico
Publicado: (2018) -
An approach to F. Riesz representation Theorem
por: del Rio,Rafael, et al.
Publicado: (2018) -
Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds
por: Yamada Takumi
Publicado: (2017) -
Finite element implementation of general triangular mesh for Riesz derivative
por: Daopeng Yin, et al.
Publicado: (2021)