Riesz means on homogeneous trees
Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp(𝕋), 1 ≤ p ≤ 2, then the Riesz means SzR (f) converge to f everywhere as R → ∞, whenever Re z > 0.
Enregistré dans:
Auteur principal: | Papageorgiou Effie |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/419417f3a2bd4b30bfc711a86ff42cd0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On the stability of harmonic maps under the homogeneous Ricci flow
par: Prado Rafaela F. do, et autres
Publié: (2018) -
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
par: Le Donne Enrico
Publié: (2018) -
An approach to F. Riesz representation Theorem
par: del Rio,Rafael, et autres
Publié: (2018) -
Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds
par: Yamada Takumi
Publié: (2017) -
Finite element implementation of general triangular mesh for Riesz derivative
par: Daopeng Yin, et autres
Publié: (2021)