Multi-Objective Optimization of Electric Arc Furnace Using the Non-Dominated Sorting Genetic Algorithm II
Combining classical technologies with modern intelligent algorithms, this paper introduces a new approach for the optimisation and modelling of the EAF-based steel-making process based on a multi-objective optimisation using evolutionary computing and machine learning. Using a large amount of real-w...
Enregistré dans:
Auteurs principaux: | Matheus F. Torquato, German Martinez-Ayuso, Ashraf A. Fahmy, Johann Sienz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/41aff34d029947d8b8d4d0fe34e3b586 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Measurement-Based Electric Arc Furnace Model Using Ellipse Formula
par: Choongman Lee, et autres
Publié: (2021) -
RESEARCH OF ARC FURNACE ELECTRICAL MODE WITH A FUZZY CONTROL MODEL
par: Y. S. Paranchuk, et autres
Publié: (2020) -
DEVELOPMENT OF METHODS AND MEANS OF COMPUTER SIMULATION FOR STUDYING ARC FURNACE ELECTRIC MODES
par: O. Y. Lozynskyi, et autres
Publié: (2018) -
Improvement of electromagnetic compatibility and efficiency of power supply circuits of electric arc furnaces in nonlinear asymmetric modes
par: Volodymyr Turkovskyi, et autres
Publié: (2021) -
MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE
par: R.N. Khrestin
Publié: (2015)